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Abstract
Rats with a normal birth weight (NBW) or intra-uterine growth retardation (IUGR) were fed basic diets (NBW and IUGR groups) or basic diets
supplemented with curcumin (NC and IC groups) from 6 to 12 weeks. The body weight of IUGR rats was lower (P< 0·05) than that of the
controls. Rats with IUGR showed higher (P< 0·05) concentrations of TNF-α, IL-1β and IL-6; higher (P< 0·05) activities of aspartate
aminotransferase (AST) and alanine aminotransferase (ALT) in their serum; and increased (P< 0·05) concentrations of malondialdehyde
(MDA), protein carbonyl (PC) and 8-hydroxy-2'-deoxyguanosine (8-OHDG) in the liver compared with the NBW rats. The livers of IUGR rats
exhibited a lower (P< 0·05) superoxide dismutase activity and decreased (P< 0·05) metabolic efficiency of the hepatic glutathione redox cycle
compared with those of the NBW rats. In response to dietary curcumin supplementation, concentrations of inflammatory cytokines and
activities of AST and ALT in the serum and MDA, PC and 8-OHDG in the liver were lower (P< 0·05), and the hepatic glutathione redox cycle in
the liver was improved (P< 0·05) in the IC group than in the IUGR group. These results were associated with lower (P< 0·05) phosphorylated
levels of the NF-κB pathway and Janus kinase 2 (JAK2) and higher (P< 0·05) mRNA expression of genes involved in the nuclear factor,
erythroid 2-like 2 (Nfe2l2)/antioxidant response element (ARE) pathway in the liver of the IC rats than that of the IUGR rats. Maternal
undernutrition decreased birth weight and led to inflammation, oxidative damage and injury in rats. Curcumin appeared to be beneficial in
preventing IUGR-induced inflammation, oxidative damage and injury by activating the expression of the NF-κB, JAK/STAT and Nfe2l2/ARE
pathways in the liver.
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Researchers have observed that at least 13·7 million infants are
born with a low birth weight each year, accounting for about
11% of newborns in developing countries(1). The probability of
intra-uterine growth retardation (IUGR) in developing countries
is approximately six times higher than that in developed
countries. IUGR is defined as growth and development of a
fetus and/or its organ that is less than that of a normal fetus
during gestation. The most notable and direct feature of IUGR
neonates is the lower birth weight, mainly owing to placental
insufficiency(2). During the critical stage of fetal growth and
development, nutritional deficiencies may cause alterations in
tissue and organ function, which has long-term effects(3). Barker
et al.(4) originally stated the ‘early’ or ‘fetal’ origins of adult
disease hypothesis. The hypothesis described that environ-
mental factors, particularly the nutritional factor, acted during

early life to programme the risks for the early onset of metabolic
disease into adult life and premature death. It is obvious that
IUGR has become a big problem for humans, especially in
developing countries, and has adverse effects on children
during their childhood and adulthood(5). Numerous epidemio-
logical studies of people from all over the world, including
those in the USA, China, India and Australasia, have also
strongly supported the hypothesis that IUGR could lead to a low
birth weight initially, thus increasing the risk of developing
metabolic diseases in adulthood(6). Current data suggest that
IUGR down-regulated the levels of proteins that regulated
immune function and oxidative defence, and impaired liver
function was found in newborn piglets with IUGR(7). Results
also suggested that a stronger pro-inflammatory bias existed in
peripheral blood lymphocytes of women with a diagnosis of
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IUGR(8). Reports also showed that the hepatocytes of IUGR
fetuses might suffer from oxidative stress, thereby decreasing
their liver detoxifying abilities(7). Although IUGR has emerged as
a leading cause of neonatal morbidity and mortality, research on
fetuses is extremely hard and complex during pregnancy. Thus,
studies on IUGR are mainly focused on its postnatal treatment.
Curcumin (C21H20O6), a yellow pigment from turmeric

(Curcuma longa), is a naturally occurring phenolic compound,
which is widely used in food, beverages, medicines and so
forth(9). Curcumin, first described in 1910 by Lampe and Milo-
bedeska, is the most active ingredient in turmeric and accounts
for 2–5% of this spice(10). Previous studies have found that
curcumin plays an important role in the inhibition of platelet
aggregation, tumorigenesis, oxidation, inflammatory cytokines
and myocardial infarction(11). Curcumin is also known to pos-
sess the capacity for anti-inflammatory(12), antioxidant(13), anti-
cancer, anti-tumour activities and has other potential protective
effects against various diseases(14). In human applications, it has
been demonstrated to be safe at dosages of up to 8 g/d(15). In
recent years, researchers have revealed that curcumin had
protective effects against oxidative stress through multiple
mechanisms, including the elevation of antioxidant enzyme
activity, attenuation of mitochondrial dysfunction and reduction
in liver injury(16,17). Studies also revealed that diets supple-
mented with 0·05% curcumin could attenuate oxidative stress
and inflammation in rats(18).
The maternal rat used as an animal model to create IUGR

newborns has been widely recognised(19). During the selected
period of pregnancy, maternal nutrition deficiencies or malnutri-
tion have been illustrated to lead to growth retardation of rats(20).
It is generally known that IUGR can have harmful effects. How-
ever, more effective nutritional treatments are yet to be studied.
To the best of our knowledge, the studies on the effects of cur-
cumin on IUGR are limited. To test this hypothesis, we chose
newborn rats with a low birth weight as the IUGR models to
investigate whether IUGR could induce inflammation, oxidative
damage and injury in the liver. We also observed the effects of
dietary 400mg curcumin/kg diet supplementation on IUGR.

Methods

Curcumin preparation

The curcumin used in this study was kindly provided by the
Kehu Bio-technology Research Center.

Animal experiment design

The experimental design and procedures were approved by the
Institutional Animal Care and Use Committee of Nanjing Agri-
cultural University following the requirements of the Regula-
tions for the Administration of Affairs Concerning Experimental
Animals of China. The feed restriction method was used for
maternal rats during pregnancy to create an IUGR mode based
on a previous study(19). This method was easily controlled by
us and based on our previous experiences with bilateral artery
ligation and protein restriction models. First-time-pregnant
Sprague–Dawley rats (Nanjing Qinglongshan Experiment

Animal Center) were housed in a facility at a constant tem-
perature and humidity and a controlled 12 h light–12 h dark
cycle. At day 10 of gestation, rats were provided either a diet of
standard laboratory chow (LabDiet 5001) (n 12) ad libitum or a
50% feed-restricted (n 12) diet determined by the quantification
of normal feed intake in ad libitum-fed rats.

In Experiment 1, maternal rats gave birth normally, and birth
weights of newborns were recorded on day 1 of postnatal life and
divided into normal or IUGR groups. Mice were limited to 10/litter
to normalise rearing (average 11·83 and 12·1 mice/litter in normal
and IUGR groups, respectively). During the 21-day lactation
period, each litter of mice from the normal or IUGR group was
nursed by their own maternal rats. At 3 weeks of age, offspring in
each litter were weaned and housed individually until they were
6 weeks old. Each litter from the normal and IUGR groups was
weighed, and the weight of an individual pup was calculated
from the group (i.e. litter weight/number of pups). The weights of
pups were recorded at 1, 21, 28, 35 and 42d of age.

In Experiment 2, at 6 weeks of age, twenty-four female rats
with nearly equal body weights (within each group) were allo-
cated to the normal birth weight (NBW), NBW with curcumin
supplementation (NC), IUGR and IUGR with curcumin supple-
mentation (IC) groups (one rat per litter, n 6/group), respec-
tively. The rats were allowed water and a standard granulated
diet (AIN-93 diet)(21) ad libitum. During the entire experimental
period, rats in the NC and IC groups were fed a standard diet
supplemented with 400mg curcumin/kg. Curcumin was added
to the feed before it was made into pellets. The light regimen was
a 12h light–12hdark cycle and the temperature was maintained
at 22± 2°C. Body weights of each group were recorded at 7, 8, 9,
10, 11 and 12 weeks of age. At 12 weeks of age, all rats were
fasted overnight, and blood was collected by cardiac puncture
after anaesthesia. Serum was obtained from the blood by cen-
trifugation for 15min at 3000 g at 4°C. Liver tissue was removed
after death, weighed and snap-frozen in liquid N2 and then
stored at −80°C for further analysis. A portion of liver tissue (the
same area for each sample) was removed and fixed in formalin
for histologic assessment.

Analysis of serum TNF-α, IL-1β and IL-6

Concentrations of TNF-α, IL-1β and IL-6 in the serum were
determined by ELISA kits from Shanghai YILI Biological Tech-
nology Co., Ltd.

Analysis of serum aminotransferase activities

Activities of serum aspartate aminotransferase (AST) and ala-
nine aminotransferase (ALT) were measured via the enzymatic
kinetic method using an automatic biochemistry analyser
(SELECTA XL; Vital Scientific) according to the manufacturer’s
protocol(16).

Liver histologic evaluation

Liver tissue specimens from the right lobe were fixed immedi-
ately in 10% formalin, embedded in paraffin and 6-μm sections
were cut and stained with haematoxylin–eosin (H&E)(22). After
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H&E staining, a morphologic evaluation was carried out using a
light microscope (Nikon ECLIPSE 80i; Nikon Corporation). The
section of each animal was counted at least three times.

Analysis of lipid peroxidation, protein and DNA oxidation
levels

Lipid peroxidation levels were expressed by malondialdehyde
(MDA) concentration, which is a byproduct of lipid peroxidation.
Concentrations of MDA in the liver were determined by an
assay kit (Nanjing Jiancheng Bioengineering Institute). Protein
oxidation in the liver was estimated via the concentration of
protein carbonyl (PC) according to a previous study(23). For the
measurement of endogenous oxidative DNA damage, 8-hydroxy-
2'-deoxyguanosine (8-OHDG) was used as a biomarker.
Concentrations of 8-OHDG in the liver were determined by ELISA
kits from Shanghai YILI Biological Technology Co., Ltd.

Assay of antioxidant enzyme activities in the serum and liver

The liver samples from −80°C were homogenised with 0·86%
(w/v) ice-cold physiological saline or tissue homogenate pro-
vided by the corresponding diagnostic kit (Nanjing Jiancheng
Bioengineering Institute) according to the instructions of the
manufacturer. Liver samples were homogenised using an Ultra-
Turrax homogenizer (Tekmar) at 13 500 g for 1min in ice-cold
water. Then, the homogenate was centrifuged at 3000 g for
15min at 4°C, and the supernatant was analysed quickly. All
results were normalised to total protein concentrations in each
sample for inter-sample comparisons. The levels of GSH and
glutathione peroxidase (GPX) in the serum, and activities of
superoxide dismutase (SOD), total antioxidant capacity
(T-AOC), glutathione reductase (GR), GPX and concentrations
of GSH and GSSG in the liver were determined using assay kits
(Nanjing Jiancheng Bioengineering Institute) according to the
manufacturer’s instructions.

Assay of gene expression

Total RNA from the liver samples stored at −80°C was isolated
using the TRIzol reagent (Invitrogen). The determination of

RNA content, mRNA quantification and real-time PCR (Applied
Biosystems) were performed according to previously described
methods(24). The primer sequences for the target and house-
keeping genes (Tnfa, Il1b, Il6, nuclear factor, erythroid 2-like 2
(Nfe2l2), NAD(P)H dehydrogenase, quinone 1 (Nqo1), haeme
oxygenase 1 (Hmox1), glutathione S transferase (Gst), glu-
tathione peroxidase 1 (Gpx1), superoxide dismutase 1 (Sod1)
and β-actin (Actb)) used for real-time PCR are listed in Table 1.
Gapdh was also used as a control gene to normalise the
expression of target genes. Briefly, a reaction system of 20 μl
was composed of 0·4 μl of forward primers, 0·4 μl of reverse
primers, 0·4 μl of ROX Reference Dye, 10 μl of SYBR Premix Ex
Taq (TaKaRa Biotechnology Co. Ltd), 6·8 μl of double-distilled
water and 2 μl of complementary DNA. The 2�ΔΔCt method was
used to calculate relative levels of mRNA expression after nor-
malisation with housekeeping genes(25). The values for the
NBW group were used for calibration.

Western blotting

Antibodies against total NF-κB (dilution 1:500) and phos-
phorylated NF-κB (dilution 1:500) were purchased from Bio-
world. Antibodies against total Janus kinase 2 (JAK2, dilution
1:1000), signal transducer and activator of transcription 3
(STAT3, dilution 1:1 000), IκBα (dilution 1:500) and phos-
phorylated JAK2 (dilution 1:1 000), STAT3 (dilution 1:500) and
IκBα (dilution 1:1 000) were purchased from Abcam. The pro-
tein (total, nuclear or cytoplasmic) of the liver was extracted
using assay kits according to the manufacturer’s instructions
(Beyotime). The protein content of the sample was assayed
using the BCA Protein Assay Kit (Beyotime). For Western
blotting analyses, 60 μg of protein from each sample was sub-
jected to sodium dodecylsulphate–PAGE. After electrophoresis,
proteins were separated and transferred to polyvinylidene
difluoride membranes. The membranes were blocked with
blocking buffer (5% non-fat dry milk) for 12 h at 4°C. The
membranes were probed with appropriate primary and sec-
ondary antibodies (horseradish-peroxidase-conjugated goat
anti-rabbit Ig G; Bioworld; 1:10 000 dilution in 1×TBS with
0·1% Tween 20). The blots were detected using enhanced
chemiluminescence reagents (ECL-Kit; Beyotime) followed by

Table 1. Primer sequences used for quantitative real-time PCR assays

Sequences

Primers Accession no. F R Product size (bp)

Tnfa XM_008772775.2 GAACTCAGCGAGGACACCAA GCCAGTGTATGAGAGGGACG 124
Il1b NM_031512.2 GACTTCACCATGGAACCCGT GGAGACTGCCCATTCTCGAC 104
Il6 NM_012589.2 CCCAACTTCCAATGCTCTCCT GGATGGTCTTGGTCCTTAGCC 71
Nfe2l2 NM_031789.2 AGCAAGACTTGGGCCACTTA GATGGAGGTTTCTGTCGTTTTC 78
Nqo1 NM_017000.3 TGGAGACTGTCTGGGAGGAG TCCTGCCTGGAAGTTTAGGT 74
Hmox1 NM_012580.2 TAACCAGGATCTCCCCAAGA TTAGAGTGCTGTGGCAGGTG 73
Gst J03752.1 TCTTGTTGGCAACCAACTCA AGTCAGACAGCACAGGAGCA 92
Gpx1 NM_030826.4 AAGGCTCACCCGCTCTTTAC ACACCGGGGACCAAATGATG 106
Sod1 NM_017050.1 AGGGCGTCATTCACTTCGAG CCCATGCTCGCCTTCAGTTA 89
Actb NM_031144.3 ATGCTGCGTCTGGACTG CTCCAGTGTGGTGAA 85

F, forward; R, reverse; Nfe2l2, nuclear factor, erythroid 2-like 2; Nqo1, NAD(P)H dehydrogenase, quinone 1; Hmox1, haeme oxygenase 1; Gst, glutathione S transferase; Gpx1,
glutathione peroxidase 1; Sod1, superoxide dismutase 1; Actb, β-actin.
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autoradiography. Photographs of the membranes were taken
using the Luminescent Image Analyzer LAS-4000 system (Fuji-
film Co.) and quantified by the Gel-Pro Analyzer 4.0 software
(Media Cybernetics).

Statistical analysis

Body weights of NBW and IUGR mice at 1 d and from 1 to
6 weeks of age were analysed using unpaired, independent
t tests. Body weights from 6 to 12 weeks of age and measure-
ments at 12 weeks of age were analysed using a two-way
ANOVA. The classification variables were birth weight (NBW+
NC× IUGR+ IC), diet (NBW+ IUGR×NC+ IC) and the interaction
between birth weight and diet (NBW×NC× IUGR× IC).
A Tukey’s post hoc analysis was used to determine the differences
between the four groups when a statistically significant birth
weight×diet interaction was observed. SPSS 17.0 (SPSS Inc.) was
used for these analyses. A probability level of P< 0·05 was con-
sidered statistically significant, and P< 0·01 was considered very
significant. Data are presented as means and standard deviations.

Results

Growth analysis

Offspring of IUGR rats were born smaller (P= 0·005) than those
of NBW rats (5·546 (SD 0·264) v. 6·314 (SD 0·358) g; Fig. 1(a)) and
their body weights remained lower than those of the NBW group
at 3, 4, 5 and 6 weeks of age (P= 0·127, P= 0·062, P= 0·481 and
P< 0·001, respectively). Body weights of rats in NBW and IUGR
groups increased at 10 (242·967 (SD 19·242) v. 237·333
(SD 12·138) g, P> 0·05; 225·533 (SD 8·454) v. 221·100 (SD 9·291) g,
P> 0·05) and 11 weeks (252·867 (SD 19·307) v. 247·267
(SD 14·418) g, P> 0·05; 236·933 (SD 9·915) v. 230·283 (SD 12·666) g,
P> 0·05) owing to dietary curcumin supplementation (Fig. 1(b)).

Relative weight of liver

At 12 weeks of age, liver weights of IUGR rats were obviously
lower (P< 0·05) than those of NBW rats (Table 2). Curcumin

treatment did not improve (P< 0·05) liver weight or relative
liver weight.

Levels of serum inflammation cytokines

IUGR rats exhibited significantly higher (P< 0·05) concentra-
tions of serum TNF-α, IL-1β and IL-6 compared with NBW rats
(Fig. 2(A)–(C)). Curcumin supplementation reduced the con-
centrations of serum TNF-α (P= 0·077), IL-1β (P= 0·007) and
IL-6 (P= 0·002) in NBW or IUGR rats. In addition, a birth
weight× dietary interaction effect (P< 0·05) was noted for
concentrations of TNF-α and IL-6 in the liver. There were no
significant differences in the concentrations of serum inflam-
mation cytokines among NBW, NC and IC groups (P> 0·05).

Activities of serum aspartate aminotransferase and alanine
aminotransferase

The activity of serum AST was higher in the IUGR group
(P> 0·05) than in the NBW group (Fig. 3(A)). Dietary curcumin
supplementation significantly decreased the activity of serum
AST in the IUGR group (P< 0·05). The activity of serum ALT
was higher in the IUGR group than in the NBW group (P< 0·05)
(Fig. 3(B)). Because of dietary curcumin supplementation, the
activity of ALT was significantly lower in the NC and IC groups
than in the NBW and IUGR groups (P< 0·01).

Liver histological changes

Normal histologic structures were observed in the liver of NBW
and NC rats (Fig. 4(a) and (b)). In the liver sections of IUGR rats,
vacuolisation and cell oedema were prevalent in the hepatocytes,
and fat cells showed signs of mild denaturation (Fig. 4(c)). In the
IC group, vacuolisation was significantly reduced and no fat cells
were observed (Fig. 4(d)).

Hepatic lipid peroxidation, protein and DNA oxidation levels

The concentrations of MDA, PC and 8-OHDG in the liver of
IUGR rats were significantly higher (P< 0·05) than those of
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Fig. 1. Growth analysis of offspring with normal body weights (NBW) or intra-uterine growth retardation (IUGR) during the early period of life (a) and diets
supplemented with curcumin (Cur) from 6 to 12 weeks of age (b). Values are means and standard deviations. a: and , NBW; and , IUGR; b: ,
NBW; , NBW+Cur; , IUGR; , IUGR+Cur. Body weights of NBW and IUGR mice at 1 d of age and from 1 to 6 weeks of age were analysed using
unpaired independent t tests. Body weights from 6 to 12 weeks of age were analysed by using two-way ANOVA, n 6. * Significant difference was observed (P< 0·05).
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NBW rats (Fig. 5(A)–(C)). In addition, a birth weight×dietary
interaction effect was noted for liver concentrations of MDA and
8-OHDG in rats. Dietary curcumin supplementation sig-
nificantly decreased the concentrations of MDA, PC and
8-OHDG in the liver of IUGR rats (P< 0·05).

Hepatic antioxidant defence capacity

The IUGR group showed lower concentrations (P< 0·01) of GSH
and activity of GPX (P< 0·1) in the serum of rats compared with

the NBW group (Table 3). In the IC group, the concentration of
GSH and activity of GPX in the serum of rats were higher
(P< 0·01) than those in the IUGR group. However, those of the
NBW group were higher (P< 0·01) than those of the NC group.
A birth weight×dietary interaction effect was noted for activities
of SOD, GR and GPX; concentrations of GSH and GSSG; and the
value of GSSG:GSH in the liver of rats. The IUGR group showed
lower (P< 0·05) SOD, GR and GPX activities; lower GSH con-
centrations; and higher (P< 0·05) GSSG concentration and GSSG:
GSH value in the liver. In the IC group, the activity of GR and
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, Normal birth weight; , IUGR; B, birth weight; D, diet; B×D, interaction between the corresponding parameters. Data were analysed by using two-way ANOVA.
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Fig. 3. Activities of aspartate aminotransferase (AST) (A) and alanine aminotransferase (ALT) (B) in the serum of normal birth weight rats (N), normal birth weight rats
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analysed by using two-way ANOVA. a,b Mean values with unlike letters were significantly different when a significant interaction was observed (P< 0·05).

Table 2. Effect of curcumin on the liver weight and liver relative weight of rats with intra-uterine growth retardation (IUGR) (12 weeks of age)*
(Mean values and standard deviations; n 6 per group)

Experiment groups

NBW NC IUGR IC P

Items Mean SD Mean SD Mean SD Mean SD B D B×D

BW (g) 253·08a 14·12 253·25a 18·08 232·50b 11·23 234·00b 11·00 <0·01 0·89 0·91
Liver (g) 10·35a 1·11 9·16b 0·92 8·90c 0·73 8·44d 0·56 <0·01 0·03 0·31
LRW (g/100 g BW)† 4·09a 0·35 3·61b 0·20 3·83a 0·20 3·61b 0·09 0·16 <0·01 0·18

NBW, normal birth weight rats; NC, normal birth weight rats fed diets supplemented with 400mg/kg curcumin; IC, IUGR rats fed diets supplemented with 400mg/kg curcumin;
B, birth weight; D, dietary curcumin supplementation; B×D, interaction between the corresponding parameters; BW, body weight; LRW, relative weight of liver.

a,b,c,d Mean values within a row with unlike superscript letters were significantly different when a significant interaction was observed (P<0·05).
* Data were analysed by using two-factor ANOVA and Duncan’s post hoc testing, where appropriate.
† The relative weight of liver is equal to the liver weight to per 100 g BW.
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concentration of GSH in the liver were higher (P< 0·05), and the
concentration of GSSG and value of GSSG:GSH in the liver were
lower (P< 0·05) compared with those in the IUGR group. The NC
group had lower (P< 0·05) activities of SOD, GR and GPX;
decreased concentrations of GSH (P< 0·05); and a higher
(P< 0·05) GSSG:GSH value in the liver than in the NBW group.

Gene expression

In the liver of the IUGR group, the mRNA expression level for
Il6 was higher (P< 0·05) and the mRNA expression levels for
Gst (P< 0·05) and Nfe2l2, Hmox1, Gpx1 and Sod1 (P> 0·05)
were lower than those of the NBW group (Table 4). Dietary

(a) (b)

(c) (d)

Fig. 4. Light microscopy of liver tissue in different groups (200× magnification): (a) normal birth weight rats, (b) normal birth weight rats supplemented with curcumin,
(c) intra-uterine growth retardation rats and (d) intra-uterine growth retardation rats supplemented with curcumin. Haematoxylin–eosin, scale bar=100 μm. † Vacuole;

, fat cell; , cellular oedema.
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B × D: P = 0.55
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Fig. 5. Concentrations of malondialdehyde (MDA) (A), protein carbonyl (PC) (B) and 8-hydroxy-2'-deoxyguanosine (8-OHDG) (C) in the liver of normal birth weight rats
(N), normal birth weight rats supplemented with curcumin (NC), intra-uterine growth retardation (IUGR) rats (I) and IUGR rats supplemented with curcumin (IC)
(12 weeks of age). Values are means (n 6) and standard deviations. , Normal birth weight; , IUGR; B, birth weight; D, diet; B×D, interaction between the
corresponding parameters. Data were analysed by using two-way ANOVA. a,b,c Mean values with unlike letters were significantly different when a significant interaction
was observed (P< 0·05).
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curcumin supplementation significantly decreased (P< 0·05)
the mRNA expression for Il1b, increased (P< 0·05) the mRNA
expressions for Nfe2l2, Nqo1, Gst and Gpx1, and had a ten-
dency to decrease (P> 0·05) the mRNA expressions for Tnfa
and Il6 and to increase (P> 0·05) the mRNA expressions for
Hmox1 and Sod1 in the IC group. A birth weight×dietary
interaction effect was noted for the mRNA expressions for Gst
(P= 0·001) in the liver of rats.

Phosphorylation levels of IκBα, NF-κB, Janus kinase 2 and
signal transducer and activator of transcription 3

The IUGR rats exhibited higher (P< 0·05) phosphorylated IκBα
(Fig. 6) and nuclear phosphorylated NF-κB (Fig. 7) levels and
lower (P< 0·05) cytoplasmic phosphorylated NF-κB (Fig. 8) levels
in the liver than in the NBW rats. In addition, the phosphorylated

levels of JAK2 (Fig. 9) and STAT3 (Fig. 10) were higher (P= 0·24,
P= 0·01) in the IUGR rats than in the NBW and NC groups.
Dietary curcumin supplementation decreased the phosphorylated
levels of IκBα (P< 0·05) and JAK2 (P> 0·05), and NF-κB (P> 0·05)
in the nucleus and cytoplasm of liver in the IC group.

Discussion

Globally, the number of underweight children was 113·4 million
in 2015(26). It has been widely accepted that early fetal life in the
maternal uterus has long-term influences on offspring after birth
in a variety of ways(27). Finding an effective treatment of IUGR
has become one of the more important challenges for human
health.

Numerous studies revealed that poor maternal nutrition was
one of the main reasons for smaller offspring in animals(28) and

Table 3. Effect of curcumin on the hepatic antioxidant defence capacity of rats with intra-uterine growth retardation (IUGR) (12 weeks of age)*
(Mean values and standard deviations; n 6 per group)

Experiment groups

NBW NC IUGR IC P

Items Mean SD Mean SD Mean SD Mean SD B D B×D

Serum
GSH (μmol/l) 15·02 2·13 11·69 1·26 5·04 0·98 8·70 0·98 <0·01 <0·01 0·78
GPX (U/ml) 462·67 39·97 369·78 25·95 319·11 43·15 412·44 46·42 <0·01 <0·01 0·99

Liver
T-AOC (U/mg prot) 0·67a,b 0·08 0·72a 0·10 0·61b 0·05 0·67a,b 0·08 0·11 0·12 0·92
SOD (U/mg prot) 64·47a 2·23 57·42b 4·71 59·06b 1·52 61·82a,b 5·24 0·75 0·18 <0·01
GSH (μmol/g prot) 29·37a 2·50 17·22b 2·50 11·45c 3·19 30·91a 1·80 0·06 <0·01 <0·01
GSSG (μmol/g prot) 35·19b,c 4·51 36·81b 5·25 44·43a 2·08 30·98c 4·21 0·33 <0·01 <0·01
GSSG:GSH 1·18c 0·05 2·19b 0·34 4·18a 0·71 1·05c 0·08 <0·01 <0·01 <0·01
GR (U/mg prot) 19·47a 0·21 16·14b 2·82 14·48b 0·24 18·04a 0·71 0·02 0·84 <0·01
GPX (U/mg prot) 670·20a 20·34 588·61b 54·86 532·28c 36·16 554·45c 24·35 <0·01 0·06 <0·01

NBW, normal birth weight rats; NC, normal birth weight rats fed diets supplemented with 400mg/kg curcumin; IC, IUGR fed diets supplemented with 400mg/kg curcumin; B, birth
weight; D, dietary curcumin supplementation; B×D, interaction between the corresponding parameters; GPX, glutathione peroxidase; T-AOC, total antioxidant capacity; SOD,
superoxide dismutase; GR, glutathione reductase; I, IUGR.

a,b,c Mean values within a row with unlike superscript letters were significantly different when a significant interaction was observed (P<0·05).
* Data were analysed by using two-factor ANOVA and Duncan’s post hoc testing, where appropriate.

Table 4. Effect of curcumin on the hepatic gene expressions of rats with intra-uterine growth retardation (IUGR) (12 weeks of age)*
(Mean values and standard deviations; n 6 per group)

Experiment groups

NBW NC IUGR IC P

Items Mean SD Mean SD Mean SD Mean SD B D B×D

Tnfa 1·00 0·00 1·04 0·16 1·33 0·06 1·09 0·30 0·87 0·27 0·12
Il1b 1·00 0·00 0·92 0·04 1·21 0·29 0·99 0·17 0·96 0·04 0·33
Il6 1·00 0·00 1·00 0·25 2·05 0·10 1·50 0·08 0·02 0·13 0·12
Nfe2l2 1·00 0·00 1·08 0·32 0·76 0·16 0·97 0·258 0·53 0·02 0·30
Nqo1 1·00b 0·00 0·99b 0·04 1·11b 0·32 1·40a 0·23 <0·01 0·02 0·06
Hmox1 1·00 0·00 0·99 0·03 0·84 0·31 0·96 0·30 0·14 0·38 0·29
Gst 1·00b 0·00 1·01b 0·021 0·79c 0·25 1·16a 0·26 0·62 <0·01 <0·01
Gpx1 1·00 0·00 1·17 0·04 0·93 0·04 1·59 0·08 0·99 <0·01 0·08
Sod1 1·00 0·00 1·07 0·04 0·82 0·04 0·92 0·03 0·97 0·31 0·84

NBW, normal birth weight rats; NC, normal birth weight rats fed diets supplemented with 400mg/kg curcumin; IC, IUGR rats fed diets supplemented with 400mg/kg curcumin;
B, birth weight; D, dietary curcumin supplementation; B×D, interaction between the corresponding parameters; Nfe2l2, nuclear factor, erythroid 2-like 2; Nqo1, NAD(P)H
dehydrogenase, quinone 1; Hmox1, haeme oxygenase 1; Gst, glutathione S transferase; Gpx1, glutathione peroxidase 1; Sod1, superoxide dismutase 1.

a,b,c Mean values within a row with unlike superscript letters were significantly different when a significant interaction was observed (P<0·05).
* Data were analysed by using two-factor ANOVA and Duncan’s post hoc testing, where appropriate.
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humans(26). In this study, rats were subjected to a 50% food
restriction from day 10 of pregnancy. A low birth weight was
regarded as an important feature of IUGR(2). Body weight of
IUGR rats was lower than those of NBW rats from 1 d to
12 weeks of age. The results implied that the restriction of fetal
nutrient intake during pregnancy delayed postnatal catch-up
growth in early life(19). At 12 weeks of age, liver weight and its
relative weight in IUGR rats were still lower than those in the
NBW group, and were not improved by dietary curcumin
supplementation. However, the body weights of IUGR and
NBW rats slightly increased after treatment with curcumin. Early
studies found that dietary administration with curcumin could
alleviate the negative effects on growth caused by environ-
mental factors(29,30). In recent years, Jun et al.(31) found that
dietary curcumin supplementation had no influence on the

growth of rats. Further studies are necessary to investigate
whether dietary curcumin supplementation has a beneficial
effect on the growth of IUGR rats, especially liver weight.

IUGR neonates are associated with a high risk of inflamma-
tion and oxidative stress(28). TNF-α is a key immune modulator,
which can activate chemotactic cytokines and produce free
radicals, leading to oxidative stress(32). Furthermore, TNF-α,
IL-1β and IL-6 have been implicated as prototype pro-
inflammatory cytokines in the pathogenesis of sepsis(33).
Higher TNF-α, IL-1β and IL-6 levels were observed in the serum
of IUGR rats, which implied that pro-inflammation occurred in
the body. Reports had demonstrated that a strong pro-
inflammatory bias existed in IUGR with placental insuffi-
ciency(8). Significantly high concentrations of TNF-α, IL-1β and
IL-6 in IUGR rats were significantly decreased after dietary
curcumin supplementation, suggesting that curcumin could
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reduce inflammatory responses in the serum. These results are
similar to those of previous studies in cells(34) and rats(35). The
liver is an important organ, and liver dysfunction has been
observed in IUGR newborn pigs(7). The activities of AST and
ALT are positively correlated with portal flow(36). Hepatic ALT is
usually located in the cytoplasm, whereas AST is distributed in
the cytoplasm and mitochondrial fractions. However, when the
structure of the liver is seriously damaged, ALT and AST are
released into the circulatory system, resulting in the improve-
ment of ALT and AST activity in the serum(37). In this study, the
activities of serum AST and ALT in the IUGR group were higher
than those in the NBW group. The increased activities of serum
ALT and AST are generally accepted biomarkers for hepatic
dysfunction(38). The vacuolisation and cell oedema from the
histological examination of liver sections were prevalent in
hepatocytes of IUGR rats, which revealed histological damage
in the liver of IUGR rats. Meanwhile, fat cells also had mild
denaturation. Similar to our findings, IUGR fetuses had a higher
activity of glutamate oxaloacetate transaminase and impaired
liver function than the normal ones(39). After curcumin sup-
plementation, the abnormal levels of serum AST and ALT and
liver histological damage improved, and these results were not
different from those observed in the normal condition. Previous
studies had shown that curcumin could significantly reduce the
levels of serum AST and ALT(40) and liver injury in mice(16) and
rats(22). Our findings indicated that diets supplemented with
curcumin attenuated liver injury and inflammation in IUGR
rats. Thus, we concluded that the protective effects of curcu-
min on the liver may be very important in IUGR rats. To
investigate the immunomodulatory mechanisms of curcumin,
we detected the expressions of the NF-κB and JAK/STAT
pathways in the liver. NF-κB is found in cytoplasm bound to
IκB. In response to various stimuli, including cytokines, stress
and bacterial pathogens, the latent cytoplasmic NF-κB/IκB
complex is activated by phosphorylation(41). Phosphorylation of
IκB induces their ubiquitination, proteosome degradation and,

subsequently, NF-κB release and nucleus translocation(42).
NF-κB is one of the most ubiquitous eukaryotic transcription
factors that regulate the expression of genes associated with
control of inflammatory responses, cellular proliferation/growth,
cell adhesion and other processes(43). Our results showed that
IUGR induced increased levels of phosphorylated IκBα and
nuclear NF-κB and decreased levels of cytoplasmic phosphory-
lated NF-κB in the liver. Similar to our study, Zhong et al.(44) also
reported that the IκB was activated and the expression of NF-κB
was increased by IUGR. These results suggested that the acti-
vation of the NF-κB/IκB complex might be related to increased
levels of cytokines in IUGR, including TNF-α and IL-1β. The
JAK2/STAT3 pathway is known to be involved in the immune
response of numerous cytokines, including IL-6, and activated in
response to injury(45). Our results demonstrated that IUGR
induced high levels of phosphorylated JAK2 and STAT3 in the
liver. The activation of the JAK/STAT3 pathway might be the
result of increased IL-6 in IUGR rats. Our results also showed
that expression levels of Tnfa, Il1b and Il6 were up-regulated in
the liver of IUGR rats. Importantly, dietary curcumin supple-
mentation obviously inhibited the phosphorylation levels of the
NF-κB pathway and JAK2 in IUGR rats and down-regulated the
expression of those downstream genes. These observations
supported that curcumin attenuated inflammation through the
NF-κB(35,46) and JAK/STAT pathways(47) in the liver of IUGR rats,
which resulted in the negative regulation of cytokines (TNF-α)
and pro-inflammatory interleukins (IL-1β and IL-6)(48).

Oxidative stress results from the imbalance of oxidation and
antioxidation and appeared in patients with IUGR(49). Over-
production of free oxygen radicals leads to lipid peroxidation and
becomes one of the important reasons for cell damage. MDA is
the primary product of lipid peroxidation. PC are used as markers
of protein oxidation in the liver(50). For the measurement of
endogenous oxidative DNA damage, 8-OHDG has been used
widely. In this study, we observed that the concentrations of MDA,
PC and 8-OHDG in the liver of IUGR rats were significantly higher
than those of NBW rats. The activities of T-AOC and SOD can
validly reflect the antioxidant status of body and tissue. The IUGR
group significantly decreased the activities of T-AOC and SOD in
our study. GSH is one of the most important intracellular anti-
oxidants that could eliminate lipid peroxides and repair oxidative
proteins through a reaction catalysed by GPX(51). During these
reactions, GSH is converted to its disulphide form, GSSG. Under
normal conditions, GSSG is reduced back to GSH by GR. GR is
also an important intracellular antioxidant enzyme and can protect
the cell against oxidative stress(52). Our results showed that the
IUGR group significantly decreased the concentration of GSH and
activities of GR and GPX and increased the concentration of GSSG
and value of GSSG/GSH in the liver. Furthermore, the con-
centration of GSH and activity of GPX were decreased in the
serum of IUGR rats. These data strongly implied that IUGR rats
caused lipid, protein and DNA damage and were susceptible to
oxidative stress. During severe oxidative stress, the decreased
GSH concentration and increased GSSG concentration induced an
increase in the GSSG/GSH cycle(53). Lower activities of GR and
GPX might be another reason for GSSG failing to reduce GSH in
the liver of IUGR rats. The findings were consistent with the results
reported by Zhang et al.(54), who noted that the metabolic
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efficiency of the hepatic GSH redox cycle was decreased in IUGR
piglets. Previous studies had proved that IUGR neonates could
only weakly protect against oxidative stress(55). Curcumin is an
antioxidant used to protect against oxidative stress in mice
experiments(56). However, investigations on the effect of curcumin
on oxidative stress and antioxidant defence in IUGR rats are very
limited. In this study, our results revealed that dietary curcumin
supplementation significantly decreased the concentrations of
hepatic MDA, PC and 8-OHDG and slightly increased the activities
of hepatic T-AOC and SOD in IUGR rats, which were in agree-
ment with the results of previous studies(57). Curcumin supple-
mentation also efficiently improved the hepatic GSH redox cycle
in IUGR rats. A study similar to this one was performed by
Altintoprak(58), who demonstrated that dietary curcumin supple-
mentation had beneficial effects on the hepatic antioxidant
defence capacity of IUGR rats. A report showed that curcumin
could attenuate As-induced hepatic oxidative stress by activating
the Nfe2l2 pathway(59). The Nfe2l2 is a key transcription factor that
regulates the transcription of some antioxidant-related genes
through the Nfe2l2/antioxidant response element (ARE) path-
way(60). In this study, Nfe2l2 mRNA expression was down-
regulated in the liver of IUGR rats. Diets supplemented with
curcumin increased the hepatic Nfe2l2 mRNA expression by
27·26%. The expression of antioxidant genes involved in the
Nfe2l2/ARE pathway (Nqo1, Hmox1, Gst, Gpx1 and Sod1) were
increased by curcumin supplementation in IUGR rats. The find-
ings of this study were in agreement with previous observations
that the hepatic Nfe2l2 protein and two typically recognised
Nfe2l2 downstream genes, Nqo1 and Hmox1, were consistently
up-regulated in curcumin-treated mice(59). These results may
indicate that curcumin protected IUGR rats from antioxidant stress
by activating the expression of Nfe2l2 and downstream genes(61).
In conclusion, maternal nutrition deficiency reduced the

growth of rats in utero, leading to a low birth weight and delayed
catch-up growth in early life. IUGR rats exhibited a high risk of
inflammation and oxidative damage in the liver. Diets supple-
mented with curcumin could efficiently attenuate the inflamma-
tion and hepatic injury of IUGR rats by regulating the NF-κB and
JAK/STAT pathways, and enhance hepatic antioxidation capacity
by activating expressions of Nfe2l2 and downstream genes. Our
findings may be helpful in finding a new strategy for the early
treatment of IUGR in humans in future.
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